How Generative Engine Optimization (GEO) Rewrites the Rules of Search

6/4/2025, 9:56:00 AM
Advanced
AI
As large language models become the primary gateways for information distribution, SEO is being replaced by GEO—Generative Engine Optimization. a16z offers an in-depth analysis of this paradigm shift in traffic dynamics, highlighting that in the AI era, a brand’s ability to be “remembered” will become its core competitive edge.

It’s the end of search as we know it, and marketers feel fine. Sort of.

For over two decades, SEO was the default playbook for visibility online. It spawned an entire industry of keyword stuffers, backlink brokers, content optimizers, and auditing tools, along with the professionals and agencies to operate them. But in 2025, search has been shifting away from traditional browsers toward LLM platforms. With Apple’s announcement that AI-native search engines like Perplexity and Claude will be built into Safari, Google’s distribution chokehold is in question. The foundation of the $80 billion+ SEO market just cracked.

A new paradigm is emerging, one driven not by page rank, but by language models. We’re entering Act II of search: Generative Engine Optimization (GEO).

From links to language models

Traditional search was built on links. GEO is built on language.

In the SEO era, visibility meant ranking high on a results page. Page ranks were determined by indexing sites based on keyword matching, content depth and breadth, backlinks, user experience engagement, and more. Today, with LLMs like GPT-4o, Gemini, and Claude acting as the interface for how people find information, visibility means showing up directly in the answer itself, rather than ranking high on the results page.

As the format of the answers changes, so does the way we search. AI-native search is becoming fragmented across platforms like Instagram, Amazon, and Siri, each powered by different models and user intents. Queries are longer (23 words, on average, vs. 4), sessions are deeper (averaging 6 minutes), and responses vary by context and source. Unlike traditional search, LLMs remember, reason, and respond with personalized, multi-source synthesis. This fundamentally changes how content is discovered and how it needs to be optimized.

Traditional SEO rewards precision and repetition; generative engines prioritize content that is well-organized, easy to parse, and dense with meaning (not just keywords). Phrases like “in summary” or bullet-point formatting help LLMs extract and reproduce content effectively.

It’s also worth noting that the LLM market is also fundamentally different from the traditional search market in terms of business model and incentives. Classic search engines like Google monetized user traffic through ads; users paid with their data and attention. In contrast, most LLMs are paywalled, subscription-driven services. This structural shift affects how content is referenced: there’s less of an incentive by model providers to surface third-party content, unless it’s additive to the user experience or reinforces product value. While it’s possible that an ad market may eventually emerge on top of LLM interfaces, the rules, incentives, and participants would likely look very different than traditional search.

In the meantime, one emerging signal of the value in LLM interfaces is the volume of outbound clicks. ChatGPT, for instance, is already driving referral traffic to tens of thousands of distinct domains.

From rankings to model relevance

It’s no longer just about click-through rates, it’s about reference rates: how often your brand or content is cited or used as a source in model-generated answers. In a world of AI-generated outputs, GEO means optimizing for what the model chooses to reference, not just whether or where you appear in traditional search. That shift is revamping how we define and measure brand visibility and performance.

Already, new platforms like Profound, Goodie, and Daydream enable brands to analyze how they appear in AI-generated responses, track sentiment across model outputs, and understand which publishers are shaping model behavior. These platforms work by fine-tuning models to mirror brand-relevant prompt language, strategically injecting top SEO keywords, and running synthetic queries at scale. The outputs are then organized into actionable dashboards that help marketing teams monitor visibility, messaging consistency, and competitive share of voice.

Canada Goose used one such tool to gain insight into how LLMs referenced the brand — not just in terms of product features like warmth or waterproofing, but brand recognition itself. The takeaways were less about how users discovered Canada Goose, but whether the model spontaneously mentioned the brand at all, an indicator of unaided awareness in the AI era.

This kind of monitoring is becoming as important as traditional SEO dashboards. Tools like Ahrefs’ Brand Radar now track brand mentions in AI Overviews, helping companies understand how they’re framed and remembered by generative engines. Semrush also has a dedicated AI toolkit designed to help brands track perception across generative platforms, optimize content for AI visibility, and respond quickly to emerging mentions in LLM outputs, a sign that legacy SEO players are adapting to the GEO era.

We’re seeing the emergence of a new kind of brand strategy: one that accounts not just for perception in the public, but perception in the model. How you’re encoded into the AI layer is the new competitive advantage.

Of course, GEO is still in its experimental phase, much like the early days of SEO. With every major model update, we risk relearning (or unlearning) how to best interact with these systems. Just as Google’s search algorithm updates once caused companies to scramble to counter fluctuating rankings, LLM providers are still tuning the rules behind what their models cite. Multiple schools of thought are emerging: some GEO tactics are fairly well understood (e.g., being mentioned in source documents LLMs cite), while other assumptions are more speculative, such as whether models prioritize journalistic content over social media, or how preferences shift with different training sets.

Lessons from the SEO era

Despite its scale, SEO never produced a monopolistic winner. Tools that helped companies with SEO and keyword research, like Semrush, Ahrefs, Moz, and Similarweb, were successful in their own right, but none captured the full stack (or grew via acquisition, like Similarweb). Each carved out a niche: backlink analysis, traffic monitoring, keyword intelligence, or technical audits.

SEO was always fragmented. The work was distributed across agencies, internal teams, and freelance operators. The data was messy and rankings were inferred, not verified. Google held the algorithmic keys, but no vendor ever controlled the interface. Even at its peak, the biggest SEO players were tooling providers. They didn’t have the user engagement, data control, or network effects to become hubs where SEO activity is concentrated. Clickstream data — records of the links users click as they navigate websites — is arguably the clearest window into real user behavior. Historically, though, this data has been prohibitively hard to access, locked behind ISPs, SDKS, browser extensions, and data brokers. This made building accurate, scalable insights nearly impossible without deep infrastructure or privileged access.

GEO changes that.

How to make the mentions: The emergence of GEO tools

This isn’t just a tooling shift, it’s a platform opportunity. The most compelling GEO companies won’t stop at measurement. They’ll fine-tune their own models, learning from billions of implicit prompts across verticals. They’ll own the loop — insight, creative input, feedback, iteration — with differentiated technology that doesn’t just observe LLM behavior, but shapes it. They’ll also figure out a way to capture clickstream data and combine first- and third-party data sources.

Platforms that win in GEO will go beyond brand analysis and provide the infrastructure to act: generating campaigns in real time, optimizing for model memory, and iterating daily, as LLM behavior shifts. These systems will be operational.

That unlocks a much broader opportunity than visibility. If GEO is how a brand ensures it’s referenced in AI responses, it’s also how it manages its ongoing relationship with the AI layer itself. GEO becomes the system of record for interacting with LLMs, allowing brands to track presence, performance, and outcomes across generative platforms. Own that layer, and you own the budget behind it.

That’s the monopolistic potential: not just serving insights, but becoming the channel. If SEO was a decentralized, data-adjacent market, GEO can be the inverse — centralized, API-driven, and embedded directly into brand workflows. Ultimately, GEO by itself is perhaps the most obvious wedge, especially as we see a shift in search behavior, but ultimately, it’s really a wedge into performance marketing, more broadly. The same brand guidelines and understanding of user data that power GEO can power growth marketing. This is how a big business gets built, as a software product is able to test multiple channels, iterate, and optimize across them. AI enables an autonomous marketer.

Timing matters. Search is just beginning to shift, but ad dollars move fast, especially when there’s arbitrage. In the 2000s, that was Google’s Adwords. In the 2010s, it was Facebook’s targeting engine. Now, in 2025, it’s LLMs and the platforms that help brands navigate how their content is ingested and referenced by those models. Put another way, GEO is the competition to get into the model’s mind.

In a world where AI is the front door to commerce and discovery, the question for marketers is: Will the model remember you?

The views expressed here are those of the individual AH Capital Management, L.L.C. (“a16z”) personnel quoted and are not the views of a16z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from portfolio companies of funds managed by a16z. While taken from sources believed to be reliable, a16z has not independently verified such information and makes no representations about the enduring accuracy of the information or its appropriateness for a given situation. In addition, this content may include third-party advertisements; a16z has not reviewed such advertisements and does not endorse any advertising content contained therein.

This content is provided for informational purposes only, and should not be relied upon as legal, business, investment, or tax advice. You should consult your own advisers as to those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an investment recommendation or offer to provide investment advisory services. Furthermore, this content is not directed at nor intended for use by any investors or prospective investors, and may not under any circumstances be relied upon when making a decision to invest in any fund managed by a16z. (An offering to invest in an a16z fund will be made only by the private placement memorandum, subscription agreement, and other relevant documentation of any such fund and should be read in their entirety.) Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles managed by a16z, and there can be no assurance that the investments will be profitable or that other investments made in the future will have similar characteristics or results. A list of investments made by funds managed by Andreessen Horowitz (excluding investments for which the issuer has not provided permission for a16z to disclose publicly as well as unannounced investments in publicly traded digital assets) is available at https://a16z.com/investments/.

Charts and graphs provided within are for informational purposes solely and should not be relied upon when making any investment decision. Past performance is not indicative of future results. The content speaks only as of the date indicated. Any projections, estimates, forecasts, targets, prospects, and/or opinions expressed in these materials are subject to change without notice and may differ or be contrary to opinions expressed by others. Please see https://a16z.com/disclosures for additional important information.

Disclaimer:

  1. This article is reprinted from [a16z]. All copyrights belong to the original author [a16z]. If there are objections to this reprint, please contact the Gate Learn team, and they will handle it promptly.
  2. Liability Disclaimer: The views and opinions expressed in this article are solely those of the author and do not constitute any investment advice.
  3. Translations of the article into other languages are done by the Gate Learn team. Unless mentioned, copying, distributing, or plagiarizing the translated articles is prohibited.

Share

Crypto Calendar

Project Updates
Etherex will launch the token REX on August 6.
REX
22.27%
2025-08-06
Rare Dev & Governance Day in Las Vegas
Cardano will host the Rare Dev & Governance Day in Las Vegas, from August 6 to 7, featuring workshops, hackathons and panel discussions focused on technical development and governance topics.
ADA
-3.44%
2025-08-06
Blockchain.Rio in Rio De Janeiro
Stellar will participate in the Blockchain.Rio conference, scheduled to be held in Rio de Janeiro, from August 5 to 7. The program will include keynotes and panel discussions featuring representatives of the Stellar ecosystem in collaboration with partners Cheesecake Labs and NearX.
XLM
-3.18%
2025-08-06
Webinar
Circle has announced a live Executive Insights webinar titled “The GENIUS Act Era Begins”, scheduled for August 7, 2025, at 14:00 UTC. The session will explore the implications of the newly passed GENIUS Act—the first federal regulatory framework for payment stablecoins in the United States. Circle’s Dante Disparte and Corey Then will lead the discussion on how the legislation impacts digital asset innovation, regulatory clarity, and the US’s leadership in global financial infrastructure.
USDC
-0.03%
2025-08-06
AMA on X
Ankr will host an AMA on X on August 7th at 16:00 UTC, focusing on DogeOS’s work in building the application layer for DOGE.
ANKR
-3.23%
2025-08-06

Related Articles

Arweave: Capturing Market Opportunity with AO Computer
Beginner

Arweave: Capturing Market Opportunity with AO Computer

Decentralised storage, exemplified by peer-to-peer networks, creates a global, trustless, and immutable hard drive. Arweave, a leader in this space, offers cost-efficient solutions ensuring permanence, immutability, and censorship resistance, essential for the growing needs of NFTs and dApps.
6/8/2024, 2:46:17 PM
 The Upcoming AO Token: Potentially the Ultimate Solution for On-Chain AI Agents
Intermediate

The Upcoming AO Token: Potentially the Ultimate Solution for On-Chain AI Agents

AO, built on Arweave's on-chain storage, achieves infinitely scalable decentralized computing, allowing an unlimited number of processes to run in parallel. Decentralized AI Agents are hosted on-chain by AR and run on-chain by AO.
6/18/2024, 3:14:52 AM
Dimo: Decentralized Revolution of Vehicle Data
Beginner

Dimo: Decentralized Revolution of Vehicle Data

Dimo is a car IoT platform built on Polygon, allowing car owners to collect and share vehicle data such as mileage, speed, and location, in exchange for DIMO tokens as rewards. The platform enables real-time monitoring, management, and monetization of vehicle data through integration with hardware such as AutoPi OBDII devices. The DIMO token, based on ERC-20, aims to incentivize user participation, with governance features included in its token economy. Dimo also collaborates with IoTeX, integrating W3bstream technology to support Web3 developers' access to vehicle data, jointly creating a new ecosystem for mobile travel. With two rounds of funding raising $20.5 million, the Dimo project has a fixed token supply, with circulating supply gradually increasing.
5/6/2024, 12:37:57 PM
AI Agents in DeFi: Redefining Crypto as We Know It
Intermediate

AI Agents in DeFi: Redefining Crypto as We Know It

This article focuses on how AI is transforming DeFi in trading, governance, security, and personalization. The integration of AI with DeFi has the potential to create a more inclusive, resilient, and future-oriented financial system, fundamentally redefining how we interact with economic systems.
11/28/2024, 3:45:01 AM
Mind Network: Fully Homomorphic Encryption and Restaking Bring AI Project Security Within Reach
Intermediate

Mind Network: Fully Homomorphic Encryption and Restaking Bring AI Project Security Within Reach

Mind is an AI restaking solution that ensures the token economy and data security of decentralized AI networks through flexible restaking and fully homomorphic encryption for consensus security. While EigenLayer uses restaking to secure different AVSs within the Ethereum ecosystem, Mind Network uses restaking to secure the consensus of various AI networks across the entire crypto ecosystem.
6/13/2024, 1:04:59 AM
Virtuals Protocol: Tokenising AI Agents
Intermediate

Virtuals Protocol: Tokenising AI Agents

Virtuals Protocol provides a framework for creating, owning, and scaling tokenized AI Agents. Our deep dive into Virtuals’ smart contracts revealed a sophisticated system for permissionless contributions and value creation.
11/29/2024, 3:31:42 AM
Start Now
Sign up and get a
$100
Voucher!